Строение: Полиуретаны могут иметь различное строение молекулярной цепи, но во всех макромолекулах полиуретанов присутствует уретановая группа -NHCOO-. Конкретное же строение конкретного полиуретана зависит от строения, молекулярного веса и соотношения реагентов. Так, например, полиуретановые эластомеры обычно получают из диолов с длинной цепью (линейных простых или сложных полиэфиров с молекулярным весом от 1000 до 2000), диизоцианатов и низкомолекулярных гликолей или диаминов. В результате такой эластомер состоит из элементарного звена сложного или простого эфира, остатка ароматического диизоцианата, уретановой группы, остатка низкомолекулярного гликоля и аллофанатного узла разветвления. Он содержит как умеренно гибкие, длинные, линейные сегменты полиэфира, так и сравнительно жесткие сегменты, образуемые ароматическими и уретановыми группами, по которым может происходить дальнейшее сшивание полимера.
В общем случае структура полиуретанов определяется межмолекулярными взаимодействиями в материале: водородными, ионными связями; диполь-дипольными, ван-дер-ваальсовыми взаимодействиями.
При образовании водородных связей донорами протонов служат атомы водорода уретановых групп. В случае полиуретанмочевин и полиамидоуретанов – атомы водорода соответствующих функциональных групп.
Акцепторами протонов являются карбонилы перечисленных групп. Или карбонилы сложноэфирных групп в случае полиэфируретанов. Или простые эфирные связи в случае полиуретанов, полученных на основе полиоксиалкиленгликолей.
Уретановые, мочевинные и другие группы, имеющиеся в структуре полиуретанов, участвуют также в диполь-дипольных взаимодействиях. В результате проявления сил специфического межмолекулярного взаимодействия в структуре полиуретанов возникают ассоциаты (доменные образования) термодинамически не совместимые с массой основных цепей полимеров, но связанные с ними химически. Вследствие такой несовместимости происходит микрофазное расслоение (микросегрегация) на надмолекулярном уровне. При этом фаза, образованная ассоциатами, является своеобразным усиливающим «активным наполнителем» в полиуретанах. В частности, этим объясняется возможность получения на основе полиуретанов материалов, обладающих высокими конструкционными свойствами (прочностью, твердостью, сопротивлением раздиру), без введения активных наполнителей.
В случае полиуретанмочевин домены – циклические образования. В так называемых сегментированных полиуретанах (блокполиуретанах), синтезированных из изоцианатных форполимеров, при получении которых соотношение изоцианатных и гидроксильных групп составляло больше двух, и эквимолярного количества низкомолекулярного диола в качестве агента удлинения цепи, доменные структуры образуются вследствие высокой концентрации блоков соседних уретановых групп. В иономерах, так называемых катионных полиуретанах, доменные структуры, образуются в виде четвертичных аммониевых соединений.
Все межмолекулярные взаимодействия играют также роль физических поперечных связей в полиуретанах. Усиливающие эффекты, обусловленные наличием доменных структур, проявляются только в совокупности:
1) с взаимодействиями неспецифического характера, например, с появлением кристалличности при использовании кристаллизующихся алифатических диизоцианатов и диолов для получения волокнообразующих полиуретанов и некоторых термоэластопластов;
2) с сильным когезионным взаимодействием ароматических диолов при использовании ароматических полиэфиров и диолов для получения термоэластопластов;
3) с наличием химических поперечных связей в литьевых полиуретанах, пенопластах, эластомерах, клеях и лакокрасочных покрытиях.
Сильные межмолекулярные взаимодействия определяют и специфику пространственной сетки полиуретанов: будучи образована только физическими поперечными связями в термоэластопластах, пластмассах, волокнах, она обеспечивает свойства квазисетчатых материалов: высокая прочность при комнатной температуре, твердость и прочее. Для получения высоких прочностных показателей у ненаполненных полиуретанов, способных функционировать при повышенных температурах, необходима смешанная пространственная сетка из физических и химических поперечных связей. Причем количество последних должно быть невелико. В противном случае химические связи будут препятствовать свободной конформации цепей полиуретанов и, соответственно, реализации сил межмолекулярных взаимодействий.
Наличие межмолекулярных взаимодействий определяет и особенности релаксационного поведения полиуретанов. С одной стороны, это существенное снижение механических показателей при многократных воздействиях нагрузок из-за частичного разрушения физических связей, в том числе под воздействием развивающихся температур. С другой – равновесный характер лабильных физических связей, способность их вследствие этого к перераспределению и восстановлению после снятия нагрузки и релаксации. Этим объясняется регенерация свойств полиуретанов, что особенно проявляется в случае пенопластов.
Elastollan 1154 D Elastollan 1154 D FHF Elastollan 1160 D Elastollan 1164 D Elastollan 1174 D Elastollan 1175 A Elastollan 1180 A Elastollan 1185 A Elastollan 1185 A FHF Elastollan 1185 A M Elastollan 1185 A W Elastollan 1185 A WM Elastollan 1190 A Elastollan 1195 A Elastollan 1198 A Полиуретан литьевой ЛУР-90 Полиуретан литьевой ЛУР-СТ (ЛУР-СП) Полиуретан литьевой СКУ 7Л Полиуретан литьевой СКУ ПФЛ
©2008-2023 Журнал «Полимерные материалы»
Все права защищены
Копирование информации данного сайта допускается только при условии установки ссылки на оригинальный материал.